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Abstract. Shape-dependent universal crossing probabilities are studied, via Monte Carlo simulations, for
bond and site directed percolation on the square lattice in the diagonal direction, at the percolation
threshold. In a dynamical interpretation, the crossing probability is the probability that, on a system with
size L, an epidemic spreading without immunization remains active at time t. Since the system is strongly
anisotropic, the shape dependence in space-time enters through the effective aspect ratio reff = ct/Lz,
where c is a non-universal constant and z the anisotropy exponent. A particular attention is paid to the
influence of the initial state on the universal behaviour of the crossing probability. Using anisotropic finite-
size scaling and generalizing a simple argument given by Aizenman for isotropic percolation, we also obtain
the behaviour of the probability to find n incipient spanning clusters on a finite system at time t. The
numerical results are in good agreement with the conjecture.

PACS. 64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions –
05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 02.50.-r Probability theory, stochastic processes,
and statistics

1 Introduction

Most of the properties of the critical state at a second or-
der phase transition are related to the existence of self-
similar correlated clusters. In the percolation problem,
the critical point is characterized by the spontaneous oc-
curence of infinite clusters of connected sites, crossing the
system in the thermodynamic limit.

The study of crossing probabilities for standard per-
colation on finite systems at the percolation threshold
has been an active field of research during the last
decade [1–44] (for a recent review see [45]).

In two dimensions, the crossing probability π can be
defined as the probability to find at least one cluster
joining two opposite edges of a rectangular-shaped sys-
tem with length L‖ and width L⊥. At the percolation
threshold, in the finite-size scaling (FSS) limit, i.e., when
L‖ → ∞, L⊥ → ∞, while the aspect ratio r = L‖/L⊥
remains fixed, the crossing probability is a scale-invariant
universal function π(r) of the aspect ratio [1,2].

Following the extensive numerical study of Langlands
et al. [1], an analytical expression for π(r) at criticality
was derived by Cardy [2]. Using the relation between per-
colation and the cluster formulation of the q-state Potts
model in the limit q → 1 [46,47] as well as the techniques
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of boundary conformal field theory, he was able to calcu-
late the probability for two non-overlapping segments on
the edge of the half-plane to be connected. The crossing
probability in the rectangular geometry could then be de-
duced from the appropriate conformal mapping. One may
notice that the scale invariance of π(r) is a non-trivial
property, resulting from the occurence of a vanishing scal-
ing dimension x(q) associated with a boundary condition
changing operator of the Potts model in the limit q → 1
for percolation.

Other exact crossing formulas were later obtained for
different geometries [5,6]. Since then, mathematically rig-
orous proofs have been provided for some of these re-
sults [25,26].

Crossing probabilities on same-spin Ising clus-
ters [27–29] and Potts clusters [30] in two dimensions have
been also considered.

Recently, some attention has been paid to the prop-
erties of incipient spanning clusters [31–44]. The prob-
ability to find n incipient spanning clusters, connecting
two disjoint segments at the boundary of a finite criti-
cal system, has been studied through Monte Carlo sim-
ulations [31–39]. Rigorous bounds on the spanning prob-
ability [40,41] have been obtained as well as analytical
expressions through conformal and Coulomb-gas meth-
ods [42–44].
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In two recent works [48,49], we started a study of
the critical crossing probability (in space-time) for off-
equilibrium systems in 1+1 dimensions. In these strongly
anisotropic systems, when the temperature-like scaling
field ∆ is non-vanishing, the correlation functions gener-
ally display an exponential decay, in the space and time
directions, characterized by a correlation length ξ and a
relaxation time τ diverging respectively as [50]

ξ = ξ̂∆−ν , τ = τ̂∆−zν , (1.1)

when ∆ → 0. The prefactors ξ̂ and τ̂ are non-universal
amplitudes and z is the dynamical (anisotropy) exponent.

The directed percolation problem [51–53] was studied
numerically through Monte Carlo simulations in [48] and
analytical results were obtained for an exactly solvable
diffusion-limited coagulation process in [49]. In these sys-
tems, the crossing probability in the time direction πt is
defined as the probability that the system of size L re-
mains active at time t. Anisotropic scaling [50,54] then
implies that the appropriate aspect ratio is r = t/Lz, i.e.,
the rescaled time. We found that in the FSS limit, as for
isotropic critical systems, the critical crossing probability
is a scale-invariant universal function of an effective as-
pect ratio which is the product of r by a non-universal
constant c [55].

In the present work, we continue the examination of
the universal properties of the crossing probability πt in
directed percolation which, in a dynamical interpretation,
essentially corresponds to the survival probability of an
epidemic spreading without immunization [56]. Section 2
is devoted to a detailed study of the influence of the initial
state on the universal behaviour of πt. In Section 3 we
present some results concerning the scaling behaviour of
the probability to find n incipient spanning clusters, i.e.,
n disjoint centres of infection surviving in the FSS limit.

2 Critical crossing probability

We study the critical crossing probability Pt, in the time
direction, for bond and site directed percolation in 1+1 di-
mensions through Monte Carlo simulations on the square
lattice. The time axis is oriented in the diagonal direc-
tion. The space and time coordinates take alternatively
integer and half-integer values on successive spatial rows.
On a site located at (x, t), with 1 ≤ x ≤ L, two di-
rected bonds are leaving, which terminate on the nearest-
neighbour sites at (x± 1/2, t+ 1/2) as shown in Figure 1.
We use either free boundary conditions (FBC) or periodic
boundary conditions (PBC) in the spatial direction. In the
later case, x is defined modulo L.

In the epidemic language, occupied (empty) sites corre-
spond to infected (healthy) individuals. In the bond prob-
lem, the bonds are independently open with probability p.
A site is occupied at t + 1/2 when it is connected via an
open bond to a site which was occupied at time t. In the
site problem all the bonds are open and a site is occupied
with probability p at time t + 1/2 when at least one of its
first neighbours at time t is occupied.
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Fig. 1. Directed percolation on the square lattice in the diag-
onal direction. There are L sites in the spatial direction which
are either occupied (•) or empty (◦). Three types of initial
states are considered with a) L occupied sites, b) l < L nearest-
neighbour occupied sites and c) a single occupied site. In the
last two cases, for FBC, the occupied sites are located in the
middle of the system.

A directed percolation cluster is a collection of con-
nected occupied sites starting from some source at t = 0.
We consider successively the three types of initial states
shown in Figure 1. A sample contributes to the crossing
probability when at least one cluster survives at time t.
The simulations are performed at the percolation thresh-
old, pbond

c = 0.644700185(5) for the bond problem and
psite
c = 0.70548522(4) for the site problem. These values,

as well as the dynamical exponent z = 1.580745(10), are
taken from [57]. The crossing probability Pt(L, t, l) is de-
termined as a function of the aspect ratio, r = t/Lz, and
the fraction f = l/L of occupied sites in the initial state,
using 106 samples with sizes up to L = 210. When f is
non-vanishing, Pt converges to a scale-invariant function,
πt(r, f), in the FSS limit where L, t and l → ∞, while
keeping r and f fixed.

2.1 Initial state with a fully occupied lattice

When the L sites are randomly occupied with probabil-
ity pi > 0, the crossing probability converges to a scale-
invariant function in the FSS limit. This is illustrated in
Figure 2 in the case of site percolation with FBC. When
pi = 1 the convergence is from above and the results ob-
tained with L = 8 are already quite close to the FSS limit.
Thus pi is an irrelevant variable when f > 0. In the fol-
lowing we always take pi = 1 in order to obtain a better
convergence towards the scale-invariant behaviour.

We now consider site and bond directed percolation
with either FBC or PBC in order to study the universality
of the crossing probability. The lattice is fully occupied in
the initial state. The behaviour of the crossing probability
as a function of the aspect ratio is shown in Figure 3.
The raw data converge quickly to scale-invariant functions
as the system size is increased. They are shown in the
inset for the largest size, L = 256. Different functions are
obtained for the two types of boundary conditions and
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Fig. 2. Crossing probability as a function of ln r for site perco-
lation with FBC. With increasing size, the values of πt obtained
when the L sites are randomly occupied in the initial state with
probability pi = 1/4, converge to the values obtained for pi = 1
on a lattice with size L = 256. The statistical errors are smaller
than the symbols.

the curves for the bond and site problems are shifted with
respect to one another, along the horizontal axis, by an
amount which is the same for FBC and PBC. The main
figure shows the data collapse on universal curves, one for
each type of boundary condition, after the results for site
percolation have been shifted.

In order to explain this behaviour let us consider the
scaling behaviour of the crossing probability for an off-
critical system with a deviation ∆ = |p − pc| from the
percolation threshold. Under an anisotropic change of the
length scale by a factor b the length transforms as L′ =
L/b, the time as t′ = t/bz and ∆ as ∆′ = b1/ν∆, where ν is
the correlation length exponent defined in (1.1). Assuming
that, as indicated by the Monte Carlo data, the crossing
probability is scale invariant, then it satisfies the scaling
relation

Pt(L, t, ∆) = Pt

(
L

b
,

t

bz
, b1/ν∆

)
. (2.1)

With b = ∆−ν one obtains

Pt(L, t, ∆) = Pt

(
L

∆−ν
,

t

∆−zν
, 1

)
= g

(
L

ξ
,
t

τ

)
, (2.2)

where g(u, v) is a universal function of its dimensionless
arguments. The FSS limit corresponds to ∆ = 0 and b = L
in (2.1), which gives

Pt(L, t, 0) = Pt

(
1,

t

Lz
, 0

)
= πt(cr) . (2.3)

For each type of boundary conditions, the crossing proba-
bility is a scale-invariant universal function of the effective
aspect ratio reff = cr. The non-universal amplitude c de-
pends on the choice of the length and time units. It can be
expressed as a function of ξ̂ and τ̂ [54]. Comparing (2.2)
and (2.3), r appears through the dimensionless ratio v/uz
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Fig. 3. Crossing probability as a function of ln r with a fully
occupied lattice in the initial state. The Monte Carlo results
for the largest size (L = 256) are shown in the inset for the
bond and site problems with FBC and PBC. The main figure
shows the data collapse on two different universal curves for
FBC and PBC in the scaling limit, after shifting the data for
site percolation, as explained in the text. The statistical errors
are smaller than the symbols.

so that

reff =
t/τ

(L/ξ)z
=

ξ̂z

τ̂
r , c =

ξ̂z

τ̂
· (2.4)

The non-universal constant c is different for the two per-
colation problems. According to (2.3), for a given type of
boundary condition, the crossing probabilities πt are iden-
tical for the site and bond problems when the values of the
aspect ratio, rs and rb, satisfy the relation csrs = cbrb.
Thus the data collapse in Figure 3 is obtained through a
shift of the site percolation data by

δr
sb = ln rb − ln rs = ln

(
cs

cb

)
= 0.2476(8). (2.5)

The numerical value of δr
sb was estimated in [48] through

a least-square fit.
The crossing probability can be calculated using a

transfer matrix in the time direction T, working with a
restricted basis of states corresponding to configurations
with at least one occupied site [58]. The matrix element
Tαβ gives the probability that the configuration in state
|α〉 at time t leads to the configuration in state |β〉 at time
t + 1. Given an initial state |i〉, the crossing probability
then reads

πt(cr) =
∑
α

〈i|Tt|α〉 . (2.6)

When r = t/Lz � 1, the leading contribution comes from
the largest eigenvalue Λmax < 1 of T and

πt(cr) ∼ Λt
max = exp

(
−a

ct

Lz

)
= exp(−acr) (2.7)

since the relaxation time | ln(Λmax)|−1 scales as Lz. In
the argument of the exponential, a is some universal con-
stant. Thus lnπt is a universal linear function of cr when
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Fig. 4. Logarithm of the crossing probability as a function of
r with a fully occupied lattice in the initial state. For the site
problem, r has been multiplied by cs/cb. In the scaling limit,
a linear universal behaviour is obtained, with different slopes
for FBC and PBC.

r � 1. This universal linear variation is shown in Fig-
ure 4 where r for the site problem has been multiplied
by cs/cb = 1.281(1) in order to eliminate the influence of
the non-universal constant c on the data collapse. Since
the argument leading to (2.7) is quite general, the same
behaviour is expected for the other types of initial states
considered below.

2.2 Initial state with a sequence of occupied sites

Let us consider now the behaviour of the crossing proba-
bility when l consecutive sites are occupied in the initial
state, as shown in Figure 1b. The results for PBC and
FBC are presented in Figures 5 and 6, respectively, for
three values of the occupation ratio f = l/L, from top to
bottom f = 1/2, 1/4, 1/16. The raw data for the largest
size, L = 256, are shown in the insets. As above, differ-
ent curves are obtained for the site and bond problems.
Shifting the site results by δr

sb, the data collapse on three
universal curves, one for each value of f , as shown on the
main figures.

The problem involves the new length scale, l, and the
crossing probability scales as

Pt(L, t, l, ∆) = Pt

(
L

b
,

t

bz
,
l

b
, b1/ν∆

)
. (2.8)

With b = ∆−ν one obtains

Pt(L, t, l, ∆) = Pt

(
L

∆−ν
,

t

∆−zν
,

l

∆−ν
, 1

)
=h

(
L

ξ
,
t

τ
,
l

ξ

)
,

(2.9)
where h(u, v, w) is a universal function of its arguments.
In the FSS limit, at the critical point, equation (2.8) gives

Pt(L, t, l, 0) = Pt

(
1,

t

Lz
,

l

L
, 0

)
= πt(cr, f). (2.10)
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Fig. 5. Crossing probability as a function of ln r with a fraction
f = l/L of occupied lattice in the initial state and PBC. The
Monte Carlo results for the largest size (L = 256) are shown
in the inset for the bond and site problems with f = 1/2, 1/4
and 1/16 from top to bottom. The main figure shows the data
collapse in the scaling limit on three different universal curves,
one for each value of f , when the data for site percolation are
appropriately shifted. The statistical errors are smaller than
the symbols.
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Fig. 6. As in Figure 5 for FBC.

The dimensionless occupation ratio f does not introduce
any new non-universal constant in the scaling limit where
L and l → ∞. Thus, as shown in Figures 5 and 6, the
crossing probability is a scale-invariant universal function
of the effective aspect ratio reff , which depends on the
value of f as well as on the boundary conditions. One
may notice a slightly slower convergence to the limiting
behaviour when f decreases.

2.3 Initial state with a single occupied site

When a single site (located in the middle of the system for
FBC) is occupied in the initial state, the crossing probabil-
ity π

(1)
t is no longer scale invariant. It acquires a dimension

which is the scaling dimension of the order parameter,

xm =
β

ν
= 0.252072(8), (2.11)
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Fig. 7. Crossing probability for site (dotted line) and bond
(full line) directed percolation with a single occupied site in the

initial state as a function of ln r. After rescaling π
(1)
t by a factor

Lxm , the size effects are eliminated. Although the data for the
site problem have been shifted by δr

sb, a different behaviour is
still obtained for site and bond percolation.

corresponding to the values

β = 0.276486(8) , ν = 1.096854(4), (2.12)

taken from [57]. This behaviour follows from the scaling
of P

(1)
t , the probability that a cluster grown from a single

central occupied site survives after t time steps,

P
(1)
t (L, t, ∆) = b−xmP

(1)
t

(
L

b
,

t

bz
, b1/ν∆

)
. (2.13)

On the infinite system with b = t1/z , one obtains

P
(1)
t (∞, t, ∆) = t−xm/zP

(1)
t

(
∞, 1, t1/zν∆

)
, (2.14)

in agreement with equation (94) in reference [53], where
the exponent β′/ν‖ = β/ν‖ = xm/z for directed per-
colation with our notations. Taking b = L at criticality
(∆ = 0) leads in the FSS limit to

P
(1)
t (L, t, 0) = L−xmP

(1)
t

(
1,

t

Lz
, 0

)
= π

(1)
t (cr, L).

(2.15)
As shown in Figure 7 a good data collapse is obtained for
Lxmπ

(1)
t with the different system sizes, L = 26 to 210. In

this figure, the data for the site percolation problem have
been shifted by δsb given in (2.5) in order to take into
account the non-universal constants cs and cb.

For small values of r, Lz � t, the boundary condi-
tions are irrelevant since, with a single occupied site in
the initial state, the crossing cluster issued from the mid-
dle of the sample does not explore the boundary regions.
For the same reason π

(1)
t is independent of the size L in

this regime. Different curves are obtained for the site and
bond problems for a given type of boundary conditions,
meaning that a new non-universal constant is involved. In
a log-log plot, it is clear that a single curve can be ob-
tained through a vertical shift δπ

sb of the data for the site
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Fig. 8. Once ln(Lxmπ
(1)
t ) for the site problem has been also

shifted by δπ
sb in order to eliminate the influence of the non-

universal amplitude in (2.19), the data collapse on two uni-
versal curves for FBC and PBC, respectively. For small values
of ln r a linear variation is obtained with a slope −xm/z, as
indicated by the dashed line.

problem. The resulting data collapse is shown in Figure 8.
Thus the new non-universal constant A is a multiplicative
one, either As or Ab, and the shift is given by:

δπ
sb = ln

(
Ab

As

)
= −0.178(4). (2.16)

It was calculated by first shifting the data of the site prob-
lem by δr

sb. Due to this horizontal shift of the site data,
a direct calculation of the vertical shift is not possible.
Thus, considering y = ln(Lxmπ

(1)
t ) as a function ln r, the

data of the bond problem were fitted to a quadratic poly-
nomial in the linear region, for small values of ln r. Then
δπ
sb was obtained as the average of yb − ys, evaluated at

small enough values of ln r for the site problem.
Alternatively, the scaling behaviour of π

(1)
t in (2.15)

can be recovered by assuming that, asymptotically when
f � 1, the scale-invariant crossing probability in (2.10)
behaves as

lim
f�1

πt(cr, f) = fxmϕ(cr) =
(

l

L

)xm

ϕ(cr) , (2.17)

so that Lxmπ
(1)
t = lxmϕ(cr).

Furthemore the non-universal amplitude, As or Ab,
which appears only in π

(1)
t , i.e., when the number l of

occupied sites in the initial state is O(1), can be explained
if one associates to these l sites an effective length leff
given by

leff = l + δl , δl = δls, δlb , (2.18)

where the increment δl is O(1) and non-universal. Thus,
replacing f by feff = (l + δl)/L, there is no change in the
FSS limit when f > 0, but when l = 1 we obtain

Lxmπ
(1)
t = (1 + δl)xmϕ(cr) (2.19)

with a non-universal amplitude given by

A = (1 + δl)xm . (2.20)
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Fig. 9. Probability πtn to find n critical spanning clusters in
the time direction for the site problem with FBC when L =
256. The number of clusters is n = 1 to 4 from right to left.
For n = 1, the spanning probabilities obtained when L = 64
and 128 are also shown.

According to (2.16) we have δls > δlb.
Since, as noticed above, π

(1)
t becomes independent of

L for small values of r, the scaling function ϕ(w) with
w = cr has to behave as w−xm/z when w � 1. This leads
to a slope −xm/z = −β/zν = −0.159464(5) for the linear
part of ln(Lxmπ

(1)
t ) as a function of ln r, in good agreement

with the numerical results in Figure 8.

3 Critical spanning clusters

In this section we present a preliminary study of the scal-
ing behaviour of the probability πtn(r) to find exactly n
independent clusters surviving after t = rLz time steps
on a system with size L in the FSS limit. In the epidemic
interpretation πtn is the probability to find n disjoint cen-
tres of infection surviving in the FSS limit. This prob-
lem presents some similarity with the statistics of fam-
ily names first studied by Galton and Watson [59] (see
also [60,61]).

The spanning probability was estimated by generat-
ing 106 samples with L = 64, 128 and 256 for the site
problem with FBC or PBC and L occupied sites in the
initial state. As the size increases, it converges to a scale-
invariant function πtn of the effective aspect ratio reff . A
better convergence is obtained with FBC, thus we shall
only analyse the results obtained with this type of bound-
ary conditions. An example of the raw data for πtn at the
largest sizes studied is shown in Figure 9.

The scaling behaviour can be obtained by extending
to the case of a strongly anisotropic system a simple ar-
gument proposed earlier for isotropic percolation [40,42].

Let Pt(n, r) denote the probability to have exactly n
spanning clusters at time t, on a system in d + 1 dimen-
sions, with volume Ld. The scale invariance of Pt implies
that the size dependence is wholly contained in the as-
pect ratio r. Dividing the system in bd subsystems with

t

L/b L/b L/b
Fig. 10. n spanning clusters on a system with size L at time t
in 1 + 1 dimensions are considered to result typically from the
juxtaposition of n/b spanning clusters on b subsystems with
size L/b.

the same volume (L/b)d, as shown schematically in Fig-
ure 10 for d = 1 and b = n, the dominant event will
correspond to n′ = n/bd spanning clusters in space-time
for each subsystem. Since the aspect ratio of the large sys-
tem is r = t/Lz, it becomes r′ = t/(L/b)z = rbz in the
smaller subsystems. Thus, up to prefactors, one expects
the following behaviour:

Pt(n, r) ∼ [
Pt(b−dn, bzr)

]bd

. (3.1)

According to the transfer-matrix argument of Section 2.1,
a leading exponential dependence on t (through r) is ex-
pected. Thus, with b = n1/d, we obtain

Pt(n, r) ∼
[
Pt(1, nz/dr)

]n

∼ exp(−αrnω) . (3.2)

Applying the first relation to the exponential form allows
us to identify the exponent ω = 1 + z/d so that the scale-
invariant crossing probability behaves as

πtn(r) ∼ exp(−αrn1+z/d), (3.3)

where α is a non-universal prefactors. Actually, the cros-
sing probability πtn, like πt, is a universal function of
the effective aspect ratio cr. This scaling behaviour gen-
eralizes the form conjectured by Aizenman for isotropic
percolation in D = d + 1 dimensions [40], which was re-
cently tested numerically with success [39]. The isotropic
limit corresponds to z = 1 and d = D − 1 in (3.3). The
anisotropic result should remain valid below the upper
critical dimension dc = 4 for directed percolation [52]. At
and above dc, as in the isotropic case, one expects a pro-
liferation of spanning clusters, linked with the breakdown
of hyperscaling [40,62].

The Monte Carlo results in Figures 11 and 12 for
the site and bond percolation problems with FBC at the
largest size, L = 256, are in good agreement with this
scaling behaviour. The insets show the linear variation of
ln πtn when r is sufficiently large. Different slopes are ob-
tained for different values of n. As shown in the main fig-
ures, after multiplication by n−(z+1), a good data collapse
is obtained.
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Fig. 11. Scaling behaviour of the crossing probability πtn(r)
for the site percolation problem with FBC when L = 256. The
inset shows the linear variation of ln πtn versus r with a slope
depending on n = 2 to 6 from top to bottom. A good data
collapse is obtained in the main figure, in agreement with (3.3)
for d = 1, when ln πtn is rescaled by n−(z+1).
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Fig. 12. As in Figure 11 for the bond percolation problem. The
dotted line on the main figure corresponds to the site problem
with n = 2 with r rescaled by the non-universal factor cs/cb.

The universality of πtn(reff) is illustrated in Figure 12.
The dotted line on the main figure corresponds to the site
problem with n = 2 after rescaling r by the non-universal
factor cs/cb. The remaining shift between the site and
bond data is likely to be due to finite-size corrections.

4 Conclusion

For the directed percolation problem in the FSS limit, the
crossing probability in the time direction, πt, is a scale-
invariant universal function of the effective aspect ratio
reff = ct/Lz, appropriate for a strongly anisotropic sys-
tem. It also depends on the fraction f = l/L of occupied
sites in the initial state, where l is the length of the se-
quence of occupied sites. This function vanishes with f as
fxm , where xm = β/ν is the scaling dimension of the order
parameter. When the L sites are occupied with probability

pi > 0 at t = 0, the crossing probability is asymptotically
the same as for a fully occupied system in the initial state.

Anisotropic scaling, together with the generalization
of a simple geometrical argument due to Aizenman for
isotropic percolation, leads to the scaling behaviour for the
probability πtn to find n critical directed percolation clus-
ters surviving at time t on a system with size Ld. The prob-
ability πtn is a scale-invariant universal function which de-
cays exponentially with n1+z/dreff . The numerical data in
1 + 1 dimensions support the conjectured expression al-
though further work is needed with larger system sizes,
in order to be closer to the true asymptotic behaviour.
The scaling behaviour should be also examined in higher
dimensions. In both cases one should use a more efficient
simulation method, like the “go with the winner” strategy
introduced by Grassberger [36,38,39]. It would be partic-
ularly interesting to study the expected crossover of πtn,
due to the proliferation of clusters, at and above the up-
per critical dimension [39]. It should be easier to do this
for directed percolation, where dc = 4, than for isotropic
percolation, where Dc = 6.

The present work can be also extended by consid-
ering the crossing probability on same-spin clusters in
strongly anisotropic spin systems at equilibrium, like the
three-dimensional uniaxial ANNNI model at its Lifshitz
point, for which the critical parameters are now accurately
known [63].
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